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• Goal:  Provide an approach for uncertainty in KRR, to be used in 
combining logical KRR with ML, that has a better balance of 
expressiveness and computational scalability. 

 

• Contribution:  theory and implementation, as extended form of logic 
programming 

• Fuzzy (t-norms), in addition to Bayesian 

 

• Simple examples, and brief demo  

 

• How influenced by others’ work at the Symposium: 

•Applications / use cases 

•Design patterns for adding KRR to ML 

Overview of Talk 
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• Probabilistic logic KRR is a fundamental bridge between ML and KE 

• Declarative logic programs (LP) is the central KR of IT 
• DBs:  Relational DBs (SQL).  Knowledge graphs, a.k.a. graph DBs (SPARQL). 

• Ontologies:  OWL-RL, RDF-S.   

• Rules:  Prolog; RIF; Production rules, Event-Condition-Action rules. 

• LP’s non-classical logic – invented by/for computer science not math 
• Humble spirit:  avoid reasoning-by-cases/disjunction; avoid proof-by-

contradiction; stay grounded  

• Well-founded semantics:  3 truth values, benefits for scalability & robustness  

• Rulelog – extended LP with high expressiveness + scalability 
• Defeasibility, higher-order syntax, object-oriented (frame) syntax, quantified 

classical-like formulas, restraint bounded rationality, provenance; poly-time! 

• But lacks kind of quantitative uncertainty needed to reason productively and 
efficiently using results from a wide variety of ML approaches 

• Distribution semantics – extended LP with Bayesian-flavor probability 
• But lacks good scalability, due to reintroducing head disjunction  

Motivation and Background 
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• Inner loop of ML 

 

• KB dev edit-test cycle 

 

• Large KGs/KBs 

Why Need Scalability  
of the Uncertain KRR 

for Combining ML and KE 
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• Kyndi: AI startup combining ML+KRR+NLP; venture-backed 
• Specialized search & question-answering, via advanced knowledge graphs 

• Customers in national intelligence, pharma, other domains 

 

• Benjamin Grosof – Chief Scientist at Kyndi.  Previously: 

• Founding CTO/CEO of Coherent Knowledge, AI startup on Rulelog KRR engine  

• Led advanced research portion of Allen Institute for AI’s predecessor (Vulcan) 

• MIT Sloan IT professor, DARPA PI, IBM Research projects lead, Accenture exec 

• Co-invented many advances in LP/Rulelog  

 

• Theresa Swift – scientist at Kyndi 
• Also researcher/engineer at US Customs & Border Patrol 

• Lead implementer of XSB 

• Co-founder of Coherent Knowledge 

• Co-invented many advances in LP/Rulelog 

 

Presenters’ Background 
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• Numerical truth values for atoms (and rules) range on real interval [0..1] 

• head formula can be: \or of disjoint atoms/literals whose weights add to 1 

• friendly(?x)~0.8  \or  unfriendly(?x)~0.2   :- student(?x).   

• Two major flavors of numerical uncertainty 

1. Bayesian flavor cf. “distribution semantics” [Sato]  
• Superset of Bayesian Networks, expressively 

• General case is computationally intractable, even for function-free 

2. Generalized “triangular norms” (t-norms), a.k.a. fuzzy flavor.   
• Parametrized by choice of the t-norm function F. 

• pr(A \and B) = F(pr(A),pr(B)).  I.e.,  “truth-functional” – key to scalability.   

• E.g., F = min.  Co-norm for \or:  e.g., max .   Same F is applied to every A,B. 

• Polynomial time for function-free 

• Generalization:  F=MinMax, a function on intervals, where the interval is 
cautious in regard to the potential correlation of A and B. 

 

Probabilistic LP – Expressive Extension of LP 



Bayesian PLP Reasoning:  Example 

 

heads(Coin)~0.5 \or tails(Coin)~0.5   :- toss(Coin) \and fair(Coin). 

heads(Coin)~0.6 \or tails(Coin)~0.4   :- toss(Coin) \and biased(Coin). 

fair(Coin)~0.9 \or biased(Coin)~0.1. 

toss(coin). 

 

• Conclude:  heads(Coin)~0.51 . 



T-Norms 

• Full Bayesian reasoning is powerful but (computationally) expensive. 

 

• Epistemically, Bayesian probabilities may not be a good way to represent 
similarity and relevancy distances.  We say, more generally:  “measures”.   

 

• Hence, T-Norms (Triangular Norms, a generalization of Fuzzy Logic) 
• Godel (i.e., “Min” for conjunction):  the measure of A op B expresses perfect 

correlation (+1) of A and B 

• Lukasiewicz: the measure of A op B expresses negative correlation (-1) of A and B 

• Product: the measure of A op B expresses independence (correlation 0) of A and B 

• “MinMax” (new!):  generalizes the measure to an interval [Lukasiewicz, Godel] 
expressing an interval of truth, cautious in regard to how much correlation of A and B. 
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• The first to implement the generalized t-norm flavor 

• Bayesian flavor (a.k.a. distribution semantics), too 

• Lattice flavor qualitative uncertainty, too   

• Supports \neg (strong negation) 

• Utilizes undefined truth value, as do normal LP and Rulelog 

• A way to combine deductive reasoning with ML facts and rules 

•E.g., in knowledge graphs  

• Implementation extends XSB, and is open source.   

•The PLPs are transformed into normal LP 

•BDDs (Binary Decision Diagrams) are used to collate information 
from different deduction paths 

• In-progress:  Aim to integrate tightly with as many Rulelog features 
as possible.  Starting with defeasibility and restraint.  Already 
reusing some of Rulelog’s algorithms, theory, implementation! 

• Also in progress:  support for running as extension of SWI Prolog, too. 

 

PLOW System for Probabilistic LP 

All 3 flavors 

under 1 roof; 

mix-and-match. 
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• Similarity relations – e.g., two documents may be more or less 
related 

 

• Vague properties – e.g., a certain person may be more or less ”tall” 
 

• Relevancy relations – e.g., a document may be more or less 
relevant to a query 

 

• Confidence measures – e.g., a document may come from a more or 
less trusted source 

 

• Lower complexity probability measures – such as “evidential” 
probabilities 

PLOW Uses 



Strong Negation in PLOW 

• Notation: 
  naf(q)  denotes default negation of q.  (“not believe” q) 
  neg(q)  denotes strong (a.k.a. explicit) negation of q.  (“believe opposite” of q) 

•   Simple example:  

   p~0.4. 

   p~0.5. 

   p :- undefined. 

   neg(p)~0.2. 

 

In this case, p~M is 

 t if M <= 0.5 

 u if 0.5 < M < 0.8 

 f if 0.8 <= M <= 1 

 

 

 

 

One can view there as being 3 zones (or bands) of measures 

having the 3 truth values:  a zone for (or where) t, a zone 

for u, a zone for f.   



PLOW Paraconsistent/Defeasibility Semantics  

• Semantics is an extension of Well-Founded Semantics with Explicit Negation 
to include quantitative values 
• Uses the coherence principle: strong (i.e., explicit) negation implies default negation. 

• Paraconsistent values are mapped to u.  This is a kind of defeasible conflict 
handling. 

• Thus, given the assertions:  
• p~0.6 

• neg(p)~0.6 

• Then conclude that: 

    p~M is:                                         neg(p)~M is:                                               
• t for M < 0.4                                     t for M < 0.4                                        

• u for 0.4 <= M <= 0.6                      u for 0.4 <= M <= 0.6 

• f for 0.6 < M <= 1                             f for 0.6 < M <= 1 



BRIEF DEMO GOES HERE 

The next few slides are screenshots 
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BRIEF DEMO GOES HERE 

The next few slides are screenshots 
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Overall Demo – XSB/PLOW command 
line; and KB editor (in Emacs) 



BRIEF DEMO GOES HERE 

The next few slides are screenshots 
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Example KB (zoomed) 



BRIEF DEMO GOES HERE 

The next few slides are screenshots 
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Start XSB, PLOW; load example KB 
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Query the example KB, in PLOW 
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• Multiple flavors of uncertainty for logic programs, all under one roof 
• Bayesian, i.e., distribution semantics.  Both general and restricted. 

• Fuzzy, i.e., t-norms.   Highly scalable.   

• Lattice, i.e., qualitative 

• Implementation as extension (package) of XSB, inheriting many good features 

• Interval t-norm:  MinMax  
• With interpretation of bounds on correlation 

• Leverages undefined truth value, and supports unstratified NAF 

• Supports strong negation (\neg), with basic defeasibility 

• Supports well:  logical functions, in combination with uncertainty 
• Well-defined:  Finite number of finite models, unlike other probabilistic LP 

approaches.  Ensured by restraint + call subsumption (features of XSB). 

• Positioned well to combine with the higher-order syntax (HiLog) feature of 
Rulelog, useful to represent advanced defeasibility, causality, natural language  

 

Conclusions:  Contributions 
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• KRR end: 
• Relate MinMax t-norm to approximation of distribution semantics 

• More on defeasibility including prioritization, argumentation meta-rules 

• Explore and roadmap integration with more/rest of Rulelog features 

• Address idempotence issues for product and Lukasiewicz t-norms.  Ideas: 

• Path independence cf. IND. Compilation cf. BDDs/circuits. Human-authored control. 

• Converge syntax with LPAD cf. PITA 
 

• ML end: 
• Pursue relationships to important specific ML techniques.  Including for:  

• Distribution semantics.  E.g., cplint, Problog, PRISM.   

• Neural network deep learning.  E.g., via t-norms.  

• Apply to constructing knowledge graphs from NL + structured info   

• As at Kyndi.  E.g., in entity tagging.    

 

Current and Future Directions 
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• Rulelog detailed tutorial (3 hours) at KR-2018 conference (Oct. 
2018): 

• At:  http://benjamingrosof.com/misc-publications/#KR2018RulelogTutorial 

• It links to: 

• http://benjamingrosof.com/wp-content/uploads/2018/11/talk-kr2018-rulelog-
tutorial-slides-2.pdf 

• Invited talk on:  why and how to add KRR to ML (July 2018)  
• At:  http://benjamingrosof.com/misc-publications  
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